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[1] Surface wave dispersion and receiver functions are
sensitive to different, but dependent, seismic properties.
Their joint inversion is multi-objective and can provide tight
constraints on layer-interfaces and S-velocities. We used
one of the competent genetic algorithms, Bayesian
optimization algorithm, as the multi-objective inversion
technique. Multi-objective criterion of receiver functions
and surface wave dispersion can better constrain solutions
than each separate objective. We applied this new method to
data from three stations in the Paraná Basin, Brazil, and
found S-velocity structure well-constrained down to 150 km
depth. The inverted S-velocities in the lower crust are less
than 3.8 km/s and are lower than in the surrounding
foldbelts. Some indication of high velocities (Vs > 4 km/s)
in the 5–7 km lowermost crust is given by a Moho
transition zone. This may suggest that possible underplating
was not widespread in the Paraná basin. INDEX TERMS:

3260 Mathematical Geophysics: Inverse theory; 7218 Seismology:

Lithosphere and upper mantle; 7255 Seismology: Surface waves

and free oscillations; KEYWORDS: multi-objective optimization,

surface wave, receiver function, crustal structure, Brazil.
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1. Introduction

[2] Surface wave dispersion (SWD) is sensitive to depth-
average S-velocity. Receiver function (RF) is primarily
sensitive to body wave velocity contrasts and vertical travel
times. So, SWD and RF constrain different, but dependent,
seismic properties of the crustal structure and their joint
inversion can provide tight constraints on both discontinu-
ities and S-velocities. Joint inversions have previously been
done by linearized method [e.g., Özalaybey et al., 1997;
Julià et al., 2000]. The joint inversion, in fact, is a multi-
objective problem with more complex nonlinearity than the
single-objective problem of SWD or RF. The main chal-
lenges in a nonlinear inversion are to find the best solutions
as well as good solutions extending over the acceptable
model-space and objective-space. These challenges require
both a competent inversion technique and an appraisement
among all acceptable models but not only among several
best models. Being a local algorithm, the traditional linear-
ized method can not easily satisfy these requirements.

[3] Genetic algorithm (GA) operates on a population of
solutions and can process a number of solutions in parallel,
so it is particularly suited for multi-objective problems.
Recently, some competent genetic algorithms [Goldberg,
2002], far superior to the conventional genetic algorithm,
have been proposed and can solve hard problems quickly,
reliably and accurately. Du et al. [2002] used GA inversion
of SWD to obtain a smooth reference model which was later
used as constraint in the linearized inversion of RFs. Here
we invert both RFs and SWD simultaneously using one of
the competent genetic algorithms, Bayesian optimization
algorithm (BOA) [Pelikan, 1999, 2001], as the main inver-
sion procedure to sample diverse optimal models under
acceptable levels. With multi-objective criteria, the chosen
models showed the resolution and extent of solutions in
objective-space and model-space areas.

2. Methods

[4] Evolution/genetic algorithms work with a number of
solutions or individuals collectively known as a population.
The probability distribution of the promising models in a
population tells the algorithm where to look for future better
solutions. A traditional GA [Goldberg, 1989] evolves a
population of solutions by repeatedly applying the operators
of selection, mutation, and crossover. These solution (and
problem) independent operators often break good partial
solutions and result in an inferior performance or conver-
gence to a local minimum even in simple problems [Pelikan
et al., 1999] because the algorithm does not know the
positions of the good genes. Bayesian optimization algo-
rithm (BOA) [Pelikan et al., 1999, 2001], one of the
competent GAs, uses Bayesian networks to encode the
dependencies between genes of promising solutions and
subsequently guide the exploration of search space. The
actual difference between BOA and a simple GA is that a
Bayesian network is first constructed as a probability model
of promising solutions instead of processing selected parent
models using crossover and mutation. Then, new candidate
solutions are generated using the constructed Bayesian
network. More detail about BOA is available elsewhere
[Pelikan et al., 1999, 2001].
[5] We added a local trial-and-error jumping iteration [An

and Assumpção, 2001] to hybridize BOA. In each genera-
tion the good models, with misfit less than the average
misfit of the last generation, are perturbed by changing their
parameter vector in a random direction. If this initial
perturbation makes the misfit worse, the perturbation is
changed to the opposite direction. Then the perturbation
amplitude increases exponentially until the model stops
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improving. This local iteration can improve GA’s efficiency
and model diversity [An and Assumpção, 2001].
[6] In the joint optimization, we used two L2-norm

objectives: to minimize the misfit of surface wave disper-
sion (Obj_dispersion) and the amplitude misfit of receiver
function (Obj_receiver). The forward procedures of RF and
SWD are from Robert B. Herrmann [2003] (www.eas.
slu.edu/People/RBHerrmann/index.html). We used the sum
of weighted objective functions as the single-objective
optimization criterion, and several weights were used to
extend the optimal front in the objective-space. This treat-
ment is also effective for conflicting objectives, e.g., obser-
vations with strong noise and uncertainties. Using synthetic
tests, we found that BOA can get more evenly-distributed
models near the optimal solution than traditional GA. The
local trial-and-error jumping iteration can help BOA reach
the synthetic solution quickly, and still prevent premature
convergence to a local solution.

3. Observation, Inversion and Results:
Paraná Basin, Brazil

[7] The intracratonic Paraná basin started subsidence in
the Early Paleozoic and had several depositional sequences
before Cretaceous. The mechanism that caused the initial
Paleozoic subsidence is still unclear and different processes
have been proposed [e.g., Pysklywec and Quintas, 2000]. In
Early Cretaceous (�137–130 Ma), just prior to the South
Atlantic opening, a large volume of basalt flow covered the
entire basin reaching thicknesses up to 1.5 km near the path
POPB-PACB (Figure 1). Hence complex basaltic under-
plating/intrusion and metamorphism in the lower crust
could be expected. The center of the Paraná basin has a
thicker crust, despite its low altitude, compared to the
neighboring foldbelt and craton [Assumpção et al., 2002].
A higher density lower crust (underplated?) would be able

to explain such difference. For these reasons, studies of
crustal structure in the basin may help to understand more
about these questions.
[8] In this study, we used the inter-station Love and

Rayleigh phase velocities from An and Assumpção [2004]
as the surface wave observation. To avoid the influence of
lateral heterogeneity, we only selected the path POPB-
PACB which did not show obvious lateral heterogeneity
in the analysis of SWD [An and Assumpção, 2004] and
RFs. Using good quality seismograms, the radial (un-
normalized) RFs of POPB, PACB and PPDB stations
were calculated by the iterative time-domain deconvolu-
tion procedure [Ligorrı́a and Ammon, 1999]. We used
about six events for each station in narrow distance ranges
(49�–62� for PPDB, 30�–40� for POPB and 38�–43� for
PACB), and mb magnitude larger than 5.5. The small
number of events for each station does not allow to
improve signal-to-noise ratio by averaging receiver func-
tions in a limited range of back-azimuths. For each
station, the average of all RFs was taken as the observa-
tion (Figure 2). According to the observation errors, we
determined the acceptable levels for Obj_dispersion as
0.035 km/s, and Obj_receiver as 0.06 s�1. Hence, all
sampled models with Obj_dispersion � 0.035 km/s or
Obj_receiver � 0.06 s�1 were saved.
[9] The model consisted of six main-layers (at least three

in the crust). Each main-layer was parameterized into
S-velocities at the layer top and bottom boundaries, thick-
ness and Vp/Vs. Each main-layer was divided into nine
homogeneous sub-layers with Vs varying linearly from top
to bottom. P-velocity (Vp = Vs � Vp/Vs) and density
(calculated from Vp) were varied linearly too. All param-
eters are listed in Table 1. The population size of BOA is
100 (50% is kept in next generation), and the local trial-
and-error iteration will evaluate about 150 more models in
each generation. Five objective weight ratios of RF to SWD
from 0.6:1 to 100:1 were used. For each ratio, the maxi-
mum number of generations is 100.
[10] The inverted results of station PPDB are shown in

Figure 3. Figure 3b shows that the inverted models only
constrained by RF have a sharp discontinuity in the crustal
base, caused by the strong Ps phase in RF observation. The
models only constrained by SWD (Figure 3d) show the
general S-velocity trend with depth. Figure 3e shows all
(>100,000) models in the objective-space. The models with
Obj_dispersion >0.035 km/s and Obj_receiver >0.06 s�1

are outside the acceptable levels of bothRF and SWD, and are
not shown. The irregular optimal front in Figure 3e does not
imply front complexity but model-sampling insufficiency.
This figure shows that a model fitting well one objective can
fit the other objective badly, so a multi-objective criterion
of RF and SWD is necessary to select the acceptable
models. We chose a criterion MultiObj = 4 � Obj_

Figure 1. The geological map [Schobbenhaus and
Bellizzia, 2001] and stations (triangles) in this study.

Figure 2. The average (thick lines) and standard devia-
tions (thin lines) of RFs for each station. Ps phase is the P-
to-S conversion at the Moho.

Table 1. Search Range [Minimum-Maximum] and String Length

of the Model Parameters

Layer Thickness Vs (top) Vs (bottom) Vp/Vs

1 1–6 km; 8 2.4–3.8 km/s; 8 – 1.8
2 5–30 km; 10 2.6–3.4 km/s; 10 3.0–4.0 km/s; 10 1.6–1.9; 5
3 5–30 km; 10 3.2–4.2 km/s; 10 3.2–4.2 km/s; 10 1.6–1.9; 5
4 5–100 km; 10 3.2–4.2 km/s; 10 3.5–5.0 km/s; 10 1.6–1.9; 5
5 5–80 km; 10 3.5–5.0 km/s; 10 3.5–5.5 km/s; 10 1.78
6 half space 3.5–5.5 km/s; 10 – 1.8
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receiver + Obj_dispersion, with the relative weight (4:1)
giving slightly more importance in fitting the receiver func-
tion which is related to the structure directly beneath the
station compared to inter-station SWD. Figure 3f shows the
models constrained by MultiObj <0.3. The combination of
the relative weight (4:1) with the limiting value MultiObj =
0.3 allows the selection of models with one objective slightly
above its acceptable limit (e.g., Obj_dispersion >0.035 km/s)
but close to the minimum of the other objective in Figure 3e.
These models have good resolution down to about 150km
and show the common features of the good models in
Figures 3b and 3d. Without much more sampling computa-
tion, the multi-objective criterion of RF and SWD eliminated
the unacceptable models in Figures 3b and 3d.
[11] Figure 4 shows the profiles of the fitness

(MultiObj�1)-weighted average S-velocities of the accepted
models. In Figure 4, the topmost, thin (�1.8 km) high-
velocity layer corresponds to the basalt flood cover plus the
thin (<�500 m) post-volcanic sediments in the Paraná
basin. Just under this layer, the lowest velocity should
correspond to the pre-volcanic sediments. The large peak
at �1 s in the RFs (Figure 2) is the P-to-S conversion at the
sediment/basement interface, which was modeled as a steep
gradient in our inversion (Figure 3f). Below the depth of
40 km, Vs changes from the lower crust smoothly to the
upper mantle, especially for POPB and PACB (Figure 4).
For stations POPB and PACB, the amplitudes of Ps phases
at �5.5 s (Figure 2) do not require a sharp Moho.

4. Discussion

[12] Because we inverted the average of RFs from all back-
azimuth, the results show the general trend of the average
profile beneath each station. Velocities less than 3.8 km/s in

Figure 4 in the lower crust seem to be characteristic of the
Paraná basin. Other studies have indicated similar results.
Surface wave dispersion for other inter-station pairs cover-
ing other parts of the Paraná basin [Assumpção et al., 2002;
An and Assumpção, 2004] showed average S-velocity less
than 3.8 km/s between 20 and 40 km depth. Surface-wave
tomography of the South American continent [Feng et al.,
2003] also indicated lower average S-wave velocities at
30 km depth beneath the Paraná basin relative to high
velocities in the surrounding fold belts. These results may
indicate that the lower crust beneath the Paraná basin has a
more felsic composition compared to the foldbelts around it.

Figure 3. The PPDB inverted models (b, d, f), fitness (a, c) and the objective-space (e). The gray scale (color) beside each
diagram is the model misfit. Obj_receiver is the objective function (misfit) of receiver function, Obj_dispersion is of surface
wave dispersion. The observation of RF is the white line (black) in (a), and of SWD is the white points (black) with error
bars in (c). See color version of this figure in the HTML.

Figure 4. The fitness-weighted average of S-velocities in
each depth from all acceptable models. The PPDB profile is
the fitness-weighted average from all models in Figure 3f.
The other two profiles were obtained in the same way from
the acceptable models with the same MultiObj criterion by
fitting the surface wave dispersion and the respective
receiver function in Figure 2.
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[13] A high velocity layer in the lowermost crust (Vp >
7.0 km/s, Vs > 4.0 km/s), up to 10 km thick, is often
observed in large sedimentary basins and areas of continen-
tal rift, and is often attributed to underplating [e.g., Mooney
et al., 1983; Durrheim and Mooney, 1994]. Molina et al.
[1988] modeled a 25–30 mGal gravity high along the axis
of the northern Paraná basin as due to a high-density 12 km
thick layer in the lowermost crust, interpreted as evidence
for underplating. Our profiles in Figure 4, however, only
show a gradual Moho which could be interpreted as thin
high-velocity layer in the lowermost crust. The profile of
PPDB shows a sharp transition from lower crust (S-velocity
<4.0 km/s) to upper mantle (>4.4 km/s). Station POPB
shows a more gradual transition with high velocities (4.0 to
4.4 km/s) from 40 to 47 km depth. PACB shows the mean
properties of POPB and PPDB below the depth of 20 km.
POPB-PACB is near the center of the Paraná basin where
the basalt flow is thickest. However, averaging RFs from
different back-azimuth could cause some smoothing due to
possible lateral variation. For this reason, the ‘‘thicknesses’’
of the Moho transitions in Figure 4 are upper bounds. So,
our results indicate that possible underplating processes
accompanying the basalt extrusion during the South Atlan-
tic rifting was not widespread in the Paraná basin but
limited and localized in some areas.
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